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ABSTRACT  

Background 

The rapid adoption of Microservices-based architecture and its predecessor Service-oriented 

Architecture's influence on most software development affects code quality unprecedentedly, 

with every redesign, rewrite, and refactoring efforts in the brownfield projects. Even a 

thoughtful attempt in the paradigm shift to microservices is iterative, massive investment, and 

code rework that attracts technical debts. Technical debt is inevitable; controlling and reducing 

the impact is the only alternative. Moreover, owing to several factors  

• challenging deadlines, lead time to market, cost constraints,  

• ignoring warnings, bugs, and code smell from the static code analysis tools,  

• the porting code to a more recent version of programming language or framework 

adds to more code smells, anti-patterns,  

• and security vulnerabilities.  

Few organisations are resorting to No-code/Low-code platforms as SaaS to avoid churn.  No-

code/low-code platform providers are leveraging microservices and serverless architecture for 

building their platforms and products. Hence, few organisations are paying for these SaaS 

platforms instead of building their custom solutions. 

Methods  

A systematic study of code smells from the public datasets acquired from other research work 

on the monolith codebases and prepare a dataset for Microservices projects with static code 

analysis tools to get code smells. There are artefacts created in Microservice architecture for 

Infrastructure as Code (IaC) for CI/CD pipelines and containerisation. These artefacts are also 

a candidate for code smells, as researched by few. This study factor in Dockerfile, YAML, and 

other IaC artefacts for code smells. Perform exploratory data analysis of code metrics data from 

research work in monolith software and data collection from microservices-based code 

repositories to generate code metrics. These code metrics would undergo systematic data 

analysis, feature engineering, and machine learning model evaluation to study the patterns, the 

significance of code metrics, and analysis with no-code/low-code platforms to provide 

recommendations over microservices/monoliths. 

Findings 

Data class, large class and long method are no more significant code smell found in 

microservices than monoliths, while unnecessary/unutilised abstraction and long statement 

continue to remain as significant contributors to code smell in microservices. The magic number 

code smell remains indifferent in monolith and microservices codebases. 

Deficient encapsulation, cyclic-dependent modularisation and complex method and broken 

hierarchy are significantly less or none in microservices. 

Conclusions 

Microservices are comparatively less prone to code smells on GitHub public repositories, but 

not code smells free and expect higher code smells in private repositories codebases. 
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CHAPTER 1: INTRODUCTION 

 

 Background of the Study  

 

Software quality degrades with the degree of non-conformance to the requirements. Is every 

need covered in the business requirement specifications? Is it practically feasible to document 

all non-functional requirements? Are these take precedence over value-driven functional 

requirements? Software "-ilities" are the most ignored requirements in the service industry over 

the quality of operational requirements – the application should work; it does work most of the 

time! Otherwise, debug, fix, and release a hotfix. An ongoing process till there is a new 

buzzword in the market like Microservices to overhaul the architecture. That is the reality of 

most software applications, so there is a code smell that is a topic of many researchers to prevent 

bad smell in the codebases or proactively detect it and eliminate them.  

Several researchers have investigated the software applications' change-proneness and analysed 

the open-sourced projects' commit history. (Palomba et al., 2013) Whereas there has been a 

study on the evolution of bad smells in objected-oriented code discussed several design 

problems over a while due to maintenance activities. (Chatzigeorgiou and Manakos, 2010) The 

statistical analyses of various refactoring concluded that the long method, feature envy, god 

class, and state checking smells are a few active code-smells. Rewriting of code causes a 

behaviour change, whereas refactoring preserves the behaviour. There is a significant impact 

on the design with the cumulative effect of successive refactoring, despite aimed to simplify.  

Moving away from monoliths to microservices-based architecture is/was an opportunity for the 

industry to reset the code smells metrics, write clean code, and improve the overall code quality. 

Microservices are increasing in popularity, being adopted by several companies, including 

SMEs and big players such as Amazon, LinkedIn, Netflix, Spotify, and SoundCloud. (Taibi et 

al., 2020) Martin Fowler describes microservice architecture as "an approach to developing a 

single application as a suite of small services, each running in its process and communicating 

with lightweight mechanisms, often an HTTP resource application programming interface 

(API)." (Fowler, Martin, 2014) Every new architectural style calls for revamping the software 

applications, learning curve, unlearning old style, and systematic effort to benefit from the 

recent paradigm change.  

Moving to the cloud and rearchitected into microservices is another massive opportunity but 

with another learning curve. There is no silver bullet in software engineering. (Brooks, F., 1987) 

It applies in the case of microservices. There is research work in which the researchers have 

collected evidence of bad practices by interviewing developers experienced with microservice-

based systems to identify microservice-specific bad smells. They then classified the bad 

practices into 11 microservice bad smells frequently considered harmful by practitioners. (Taibi 

and Lenarduzzi, 2018) These 11 bad smells are proper sets of classification for this study work 

for future investigation. 

This project studies code metrics that influence increasing code smells in polyglot 

microservices, how No-code/Low-code platforms(Woo, 2020) are emerging as an alternative. 

Exploratory data analysis, feature engineering like handling outliers, categorical imputation, 

feature split or scaling of different code metrics, and ML technique can help classify and 



 

 

correlate code smells from monoliths and microservices codebases, and programming 

languages.   

These code metrics categorised in the quality dimensions of size, complexity, coupling, 

encapsulation, and inheritance in table 23 https://link.springer.com/article/10.1007/s10664-

015-9378-4/tables/23. (Arcelli Fontana et al., 2016) 

Compare with Microservices projects factoring anti-patterns, pitfalls, (Moha et al., 2010) 11 

microservice bad smells, namely: wrong cuts, hard-coded endpoints, cyclic dependency, too 

many standards, API versioning, Inappropriate service intimacy, shared libraries, ESB usage, 

shared persistency, microservice greedy and not having an API gateway. 

This study also factors code smells in Infrastructure as Code (IaC) (Schwarz et al., 2018) and 

Dockerfile smells (Wu et al., 2020) in Microservice codebases. 

 

 Problem Statement 

 

Technical debt affects software maintainability in the long run, and researchers are keen on 

detecting code smells using machine learning techniques. The code smells are categorised in 

Bad Smells in Software – a Taxonomy and an Empirical Study (Vanhanen, 2014) as the 

bloaters, the object-orientation abusers, the change preventors, the dispensables, and the 

couplers.  

Static code analysis tools can catch these code-smells, but there is subjectivity in the developer's 

interpretation of those code smells. There are two different categories of code smell detection: 

rule-based factors and different metrics in various scenarios that define a set of rules—other 

approaches based on machine learning techniques that are the main metrics oriented. There are 

no study factors in both monolith and microservices code metrics; compare them to analyse 

with EDA with a machine-learning algorithm to understand its significance.  

The detection of code smells in monolith software had been an important research topic in 

software engineering. The researcher and practitioner had employed several machine-learning-

based techniques to classify code smell or not. They had used multi-label classification 

algorithms like decision tree, random forest, Naïve Bayes, SVM, NN. (Kiyak et al., 2019). 

Another research conducted a large-scale study of 32 different machine learning algorithms to 

four types of code smell, i.e., Data Class, Large Class, Feature Envy, and Long Method. (di 

Nucci et al., 2018) The empirical benchmark of 16 machine learning techniques for detecting 

four code smell types by Arcelli  (Arcelli Fontana et al., 2016) is the most comprehensive 

related work. Furthermore, code bad smell detection through evolutionary data mining (Fu and 

Shen, 2015) and Historical information for smell detection (HIST) approach (Palomba et al., 

2013) are two other approaches studied.  

Refactoring is a systematic technique used for improving the design of the existing code, 

moving away from dirty code to clean code. Refactoring techniques, namely composing 

methods, moving features between objects, organising data, simplifying conditional 

expressions, simplifying method calls, and dealing with generalisation. Refactoring detection 

in Refactoring Miner 2.0 tool (Tsantalis et al., 2020) is a related work to assist the code review 

process; researchers can create refactoring datasets from commit history and see patterns of 

https://link.springer.com/article/10.1007/s10664-015-9378-4/tables/23
https://link.springer.com/article/10.1007/s10664-015-9378-4/tables/23


 

 

self-admitted technical debt removal. We have discussed various code smells-related work in 

the monolith software, and research on microservice of eleven code smells in the literature 

review.  

 

 Aim and Objectives 

 

This study aims to find common trends in code smells injected by several microservices-based 

architectures in the brownfield projects and how the code metrics negatively impacted 

maintainability aspects of the software:  

• Investigate code metrics of the monolith software vs microservices-based architecture, 

• Identify code metrics that are of significant influence in the modernised software 

(microservices), 

• List out critical drivers for moving away from custom development to no-code/low code 

platforms. 

This study uses an existing set of the dataset and current work by researchers on code smells in 

monolithic architecture and compares them with code smells in a microservices architecture. 

This study also considers factors against custom development over low-code/no-code platforms 

- Microsoft Power Platform, Google AppSheet, and Amazon Honeycode.  

 Research Questions 

 

• Does the code quality deteriorate with modernisation investment in the journey to cloud 

migration?  

• What are code metrics predominately impacted, moving from monolith to microservices 

architecture? 

• Are these modernisation glitches paving the way to no code/low code platforms? 

• What are those metrics that are in favour of the no-code/low code platforms? 

The code metrics are studied with feature engineering and classification to the model-dependent 

variable categorical in terms of one or more independent variables, using the sigmoid function 

in logistic regression. 

 

 Significance of the Study 

 

The code smells in microservices-based architecture that significantly affects code quality 

would help the practitioner factor these in the static code analysis, develop highly maintainable 

software, understand change-proneness, focus on clean code and testability of the code. This 

study would have a global impact on software engineering practices. 



 

 

The containerisation of software to cloud-native, rewritten into microservices, is common. This 

study would help provide recommendations on the cloud journey. It could also help compare 

these metrics between monolith, microservices, and no-code/low platforms and make trade-offs 

in modernisation efforts. 

 

 Structure of the study 

 

Figure 1.1 structure of the study 
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CHAPTER 2: LITERATURE REVIEW 

 

 Introduction 

 

Microservices are turning out to be the de-facto architecture in modern enterprise applications. 

However, a particular section of software professionals recognises that this architecture is not 

suitable for all scenarios. Based on a study, the monolithic based architecture software has 

performed better than the microservices in a small number of users < 100 with reasonably lesser 

application load. The monolithic software has performed at a higher throughput on average, 

with a fixed number of requests per second in a study. So, monolithic software primarily aims 

when the developer to handle user requests more quickly. (Al-Debagy and Martinek, 2018) 

The microservices architectural style benefits monoliths  

• faster delivery,  

• agility in smaller teams,  

• improved scalability,  

• greater flexibility  

• and breaking down the complexity monster.  

Like monolithic, microservices are also prone to code smells. 

Code smells are like bad smells or irregularity within codebases that do not necessarily impact 

the software's performance or correctness. But the poor programming practices deteriorate 

program quality in reusability, testability, and maintainability. It is more critical in 

microservice-based architecture; the benefits of a logically distributed development lifecycle 

increase the chances of getting code smells if it went unnoticed. Due to microservices' 

distributed nature, microservice-specific code smells often focus on across modules issues 

rather than with modules. Traditionally, code-smells detection tools can detect code-smell, but 

it becomes tougher to handle it in discrete modules if it goes unnoticed during the development 

process. It amounts to a greater degree of technical debt in a microservices architecture. (Walker 

et al., 2020) 

New areas of code smell in Microservices 

CI/CD practice enables faster deployment in the microservices paradigm. Infrastructure-as-

code (IaC) is trending as de-facto practice for continuous deployment by defining machine-

readable files automation. Terraform is another catalogue of software quality metrics to 

complex deployment in several microservices, secrets, config maps, YAMLs, Dockerfile, 

Ansible playbooks. (Dalla Palma et al., 2020) 

There is a significant uptake on containerisation via Microservices in cloud applications 

management. A container in the container technology holds a self-contained, lightweight 

package. The various parts of an application - presentation layer, middleware, and business 

logic packaged as containers to run the applications. (Pahl et al., 2017) 



 

 

Containerisation is a new area for researchers to explore the possibility of avoiding code smells 

and controlling the maintenance cost for newly written codebases. Such studies would also help 

in reducing the deployment complexity and making it less error prone.  

 

 Evolving Code and Refactoring 

 

Refactoring is a technique of altering the software's internal anatomy without any changes to 

the external behaviours. The developers use this technique to address code smells or anti-

patterns in the codebase. These code smells are categorised into broader units as the bloaters 

object-orientation abusers, change preventers, dispensable, encapsulators, and couplers.  

This paper concluded that 28% of the researcher applied automatic detection tools for 

discovering code smells, while 27% of them applied empirical methods to do the same. There 

are empirical studies that consider many datasets, and those monoliths study highly reveal God 

class, Long Method, and Feature Envy smell. (Singh and Kaur, 2018) 

Bad smells evolution in object-oriented design is also another topic of interest for researchers. 

Few researchers see it as a problem of inability to design principles adherence, violation of 

design heuristics, lack of understanding design patterns and appropriate usage of the same or 

apply anti-patterns. Source code also reflects architectural decisions by recording the design's 

evolution in the changesets and can be valuable in maintaining maintainability. The previous 

studies that mainly focused on identifying the refactoring emphasise findings and assumptions 

regarding the problems themselves and the reasons causing their appearance and removal 

during software evolution. (Chatzigeorgiou and Manakos, 2010) 

Code writing, code removal, class/method removal, and intentional refactoring activity are 

reasons for eliminating the bad smells. This study also summarises all identified bad smells 

(long method, feature envy, state checking) for different code projects in bad smell evolution. 

This study depicts the average time of persistence of a bad smell in the system and examined 

specific refactoring to remove smells and reasons for code smells like design problems, 

refactoring activities, and a significant percentage of the problem introduced time. 

 Self-admitted technical debt  

 

Self-admitted technical debt is another area of researcher interest. This study (Maldonado et al., 

2017) inferred from commit comments of 10 open-source projects, namely Ant, ArgoUML, 

Columba, EMF, Hibernate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel SQL. These projects' 

comments were manually classified into specific technical debt types such as design, 

requirement, defect, documentation, and test debt. 61,664 comments from this dataset (i.e., 

those classified as design self-admitted technical debt, requirement self-admitted technical debt 

and without technical debt) are trained the maximum entropy classifier. Then this classifier was 

used to identify design and requirement self-admitted technical debt automatically. 

 Code smell tools 

Code smell tools have been developed for high-level design, architectural smells, and language-

specific code smells, measuring code smells and the application's quality.  



 

 

The field of automatic code-smell detection continues to evolve with an ever-changing list of 

code smells and languages to cover. Code analysis is expected to identify code smells; for 

instance, stylecheck, stylecop detects the code patterns that resemble a code smell.  

In a distributed environment of microservices, there have been multiple code smells identified. 

In one study, these smells include improper module interaction, modules with too many 

responsibilities, or a misunderstanding of the microservice architecture.  

Code smells can be specific to a particular application perspective, including the 

communication perspective or the application's development and design process.  

The study on Microservice code smells the definition of eleven microservice-specific code 

smells from a recent exploratory study by (Taibi et al., 2020) and concluded automated tools 

correctly analysed both testbed systems and successfully identified the applications 

microservice code smells.  

Code smells do not always break the system or cause system-crashing bugs, but they are 

problems but are poor programming practise indicators. One of the main validity threats is the 

three code smells microservice greedy, wrong cuts, and too many standards.  

While these code smells are defined explicitly as to what they are, they do not have an 

established system for detection or solution in the Microservices architecture. However, 

additional hard-coded dependencies in container images might require further research to 

identify them correctly. Besides, for compiled languages, source code analysis is not possible 

within a containerised environment. 

 Machine learning techniques for code smell detection 

An extensive study used 16 different machine-learning algorithms on four code smells (Data 

Class, Large Class, Feature Envy, Long Method) and 74 software systems, with manually 

validated code smell samples.  

They found that all algorithms achieved high performances in the cross-validation data set. The 

highest performances were obtained by J48 and Random Forest, while support vector machines 

achieved the worst performance.  

However, the lower prevalence of code smells, i.e., imbalanced data, in the entire data set 

caused varying performances that need to be addressed in future studies. And the researchers 

have concluded that machine learning in code smell detection could provide high accuracy (>96 

%). Only a hundred training examples are needed to reach at least 95 % accuracy. 

 Summary 

  

Most of the studies have concluded a set of code smells prominent in most of the source code 

available in several GitHub repositories, daily dump available from GHTorrent dataset. The 

researchers have applied different machine learning techniques for detecting the code smell, 

comparing several machine learning techniques to find a higher accuracy rate of different 

machine learning algorithms. 30-60% of the research papers have studied code smell detection 

tools, machine learning techniques and addressed code smells, i.e. God class, Feature Envy, 

Long Method, Long parameter list and data class. (Santos et al., 2018) A study on quantifying 

code smells on maintenance effort uses multiple linear regression analysis to conclude that the 



 

 

code smell is not a significant driver of the effort. A developer can manage to perform the given 

tasks efficiently, ignoring code smells. (Sjoberg et al., 2013) 

There is more weightage of measuring code smell or detection tools, and various approaches 

around code smell detection than identifying the code smells that could negatively impact the 

code quality in each architectural paradigm.  

  



 

 

CHAPTER 3: RESEARCH METHODOLOGY 

 

 Introduction 

 

This study compares code smells datasets from existing research work and the code smells 

identified in microservices-based architecture codebases available on GitHub. Also, identify 

trade-offs of custom development vs low-code and no-code platforms. 

This study leveraged the code smell dataset of monolithic software from existing research work 

that includes various quality dimensions of size, complexity, coupling, encapsulation, and 

inheritance. Furthermore, try to answer the following questions:  

Does the code quality deteriorate with modernisation investment in the journey to cloud 

migration?  

What are code metrics predominately impacted, moving from monolith to microservices 

architecture? 

Are these modernisation glitches paving the way to no code/low code platforms? 

What are those metrics that are in favour of the no-code/low code platforms? 

It becomes imperative to identify how microservices architecture is different from monolithic 

in terms of possible code smells that can deteriorate the code quality. Such code quality may be 

an outcome of a rewrite or refactoring effort. (Fritzsch et al., 2018) 

Collate the code metrics from data class, feature envy, god class and long method datasets. 

Identify only those code metrics that can potentially impact the code quality in the 

microservices architecture. E.g. the number of classes and methods, number of interfaces, 

children and implemented interfaces and validate this hypothesis by adding similar metrics from 

microservices codebases. (Rahman et al., 2019) 

There are several studies done using Java, Python codebases. This study would use GHTorrent, 

and GitHub GraphQL to curate C# projects. Along with GitHub awesome .NET core projects 

to use sonar runner on these C# projects. Furthermore, measure code smells, vulnerabilities, 

duplication, and cognitive complexity metrics to determine the extent of the code smell in 

microservices codebases written in C#. (Sharma et al., 2017) 

Also, curate GitHub repositories for microservices-based artefacts as described in these 

research works on the code smell of Dockerfile and Infrastructure as a Code (IaC). (Schwarz et 

al., 2018; Dalla Palma et al., 2020; Wu et al., 2020) 

Various parameters of the different no-code/low-code platforms like integration, customisation, 

scalability, ease of use and deployment using Gartner factored into to conclude the study.  

 

  



 

 

 Methodology  

 

To study code smells patterns in monolith software and compare them with microservices, this 

study uses using the following datasets: 

• Monoliths Repos dataset from The Qualitas corpus (Tempero et al., 2010) 

• Select Java and C# Microservices Repos dataset from GitHub (Rahman et al., 2019) 

The Qualitas corpus is a collection of curated software 112 open-sourced Java systems with 15 

systems of 10 or more versions and around 754 total versions of Java systems available in the 

corpus. This corpus is made available to be intended for empirical studies of code artefacts.  

Several static analysis tools were evaluated to conduct this study, including PMD 

(https://pmd.github.io), SonarQube and a curated list of static analysis tools on GitHub. 

Furthermore, considering code smells in Java and C# as focus areas of this study, uses Designite 

(Sharma, 2016), a Software Design Quality Assessment Tool for analysing code smells. This 

tool detects architectural, design, implementation, methods and types-level metrics. 

This study uses the following for code smells analysis in monolith and microservices codebases: 

 Data Sourcing: Source code smells data curation 

 

The Qualitas Corpus that uses Perl script unpack the downloaded contents r, e and f distribution 

located on http://qualitascorpus.com/download that is around 22.9 GB of tar files. So it is about 

60+ GB on unpacking using Perl script. 

The bash script is used to iterate through 112 open-sourced Java systems located in the systems 

folder of the corpus downloaded from the previous step.  Furthermore, run Designite for Java 

and C# versions and get code smells metrics in comma-delimited values(CSV) files. 

These generated .csv files are collected for code smells in monoliths and microservices 

codebases written in Java and C# languages. 

The cloc Perl script for R is used to get a line of code metrics, installed from 

https://github.com/hrbrmstr/cloc or https://github.com/AlDanial/cloc  

The R script is written for further analysis of code smell metrics that includes 

• Read .csv files in R data frames 

• Perform exploratory data analysis 

• Merge monoliths and microservices data 

• Study design and implementation metrics for codebases 

• Use GH Archive from https://github-sql.github.io/explorer to curate microservices 

• Use the GHTorrent project (Gousios, 2013), about 353 GB of .csv files used with 

MySQL for GitHub projects, commits, pull request commits, and issues. This study 

had the plan to use this data for getting insight into commits to fix code smells related 

bugs. 

https://pmd.github.io/
https://github.com/analysis-tools-dev/static-analysis
http://qualitascorpus.com/download
https://github.com/hrbrmstr/cloc
https://github.com/AlDanial/cloc
https://github-sql.github.io/explorer


 

 

 Exploratory Data Analysis 

 

• Study trends of the code smell within the various version of codebases available in the 

corpus. 

• Study trends of the code smell across corpus systems. 

• Study trends of the code smell at method and type levels. 

• Study trends of the code smell in microservices codebases cloned from public git 

repos. 

• Merge monoliths and microservices metrics and study the trends of the code smell. 

 Data preparation 
 

The monoliths and microservices are merged to perform data analysis. 

  



 

 

CHAPTER 4: IMPLEMENTATION 

 

 Introduction 

 

This study uses Java programming language codebases from Qualitas Corpus to study the 

code smell trends. Table 4.1 depicts 12 monoliths projects selected for initial analysis to 

compare with 11 available microservices projects (Java and C# programming languages) 

from GitHub. These monoliths projects are selected based on the star rating of the project 

available in the GHTorrent dataset and the top 5 projects in terms of lines of the code. 

The first and recent available versions are selected for the analysis. 

# Project.Name version language loc 

1 antlr 4.0 Java 34359 

2 antlr 2.4.0 Java 22504 

3 derby 10.6.1.0 Java 619171 

4 derby 10.1.1.0 Java 393031 

5 hibernate 3.6.9 Java 350490 

6 hibernate 0.8.1 Java 3482 

7 lucene 4.3.0 Java 423351 

8 lucene 1.2-final Java 7684 

9 springframework 3.0.5 Java 322007 

10 springframework 1.1.5 Java 103989 

11 tomcat 7.0.2 Java 181184 

12 tomcat 5.0.28 Java 152043 

Table 4.1 LOC Monolith codebases 

Sources Lines of code (SLOC) is one of the vital software metrics to qualify software 

complexity. Still, sometimes it becomes an indicator of the order of magnitude or measure of 

productivity that could also result in more code smells, more complexity, and increased chances 

of introducing new bugs. In this study, the Line of code is a factor for comparing monoliths 

codebases with microservices ones. 

There are 3 R script and a bash script written for code implementation, namely: 

1. Process-cs-data.R 

2. Curate-data.R 

3. Analyze-data-func.R 

4. Collect-codesmell.sh 

The process-cs-data.R file is an R script for processing, analysing and visualising code smell 

data collected. The curate-data.R script is for running sloc utility to collect a line of code 

information for monolith and microservices projects. The analyse-data-func.R has required R 

functions for reading code smells from curated comma-separated values (CSV) files. 



 

 

The bash script iterates through various folders in the downloaded and extracted folder of the 

Qualitas corpus to run the Designite tool, collect code smells in the .csv files, and merge those 

.csv files. There are four different types of code smells generated in .csv files, namely: 

1. design code smells 

2. implementation code smells 

3. method-level code smells 

4. class-level code smells 

Table 4.2 depicts microservices-based sources for the code smells study. 

# Source language LOC 

1 LakesideMutual Java 10675 

YAML 738 

Dockerfile 112 

2 microservice Java 1833 

YAML 107 

Dockerfile 43 

3 microservice-consul Java 1750 

YAML 211 

Dockerfile 41 

4 Tap-And-Eat-MicroServices Java 624 

YAML 111 

Dockerfile 48 

5 spring-boot-microservices-example Java 156 

6 cqrs-microservice-sampler Java 1344 

YAML 252 

Dockerfile 30 

7 spring-cloud-microservice-examples Java 2170 

YAML 287 

Dockerfile 45 

8 e-commerce-microservices-sample Java 566 

YAML 146 

Dockerfile 63 

9 spring-cloud-netflix-example YAML 560 

Java 292 

Dockerfile 52 

10 spring-netflix-oss-microservices Java 560 

YAML 243 

Dockerfile 56 

11 ftgo-application Java 10332 

YAML 1259 

Dockerfile 43 

12 spring-petclinic-microservices Java 1243 

YAML 255 



 

 

Dockerfile 26 

13 EnterprisePlanner C# 4179 

YAML 57 

Dockerfile 21 

14 eShopOnContainers C# 43372 

YAML 10444 

Dockerfile 672 

15 nhibernate-core C# 580757 

YAML 457 

16 NormanVu-EnterprisePlanner C# 1959 

Dockerfile 38 

17 pitstop C# 7298 

YAML 2081 

Dockerfile 104 

18 vehicle-tracking-microservices C# 5460 

YAML 244 

Dockerfile 98 

Table 4.2 Microservices codebases 

 

 Dataset 

 

As described in the research methodology, the Qualitas corpus and microservices source code 

from GitHub is used as datasets to extract code smell using the Designite tool and code 

metrics using cloc. Table 4.3 depicts an output version as comma-separated values (CSV) 

from Designite. Archtype field to denote monoliths as zero and microservices as one in the 

last column of the table. 

# Project.Name version Code.Smell Smells Archtype 

1 derby 10.6.1.0 Long Statement 4271 0 

2 springframework 3.0.5 Unutilized Abstraction 3463 0 

3 derby 10.1.1.0 Long Statement 2577 0 

4 lucene 4.3.0 Long Statement 2574 0 

5 lucene 4.2.1 Long Statement 2473 0 

6 lucene 4.2.0 Long Statement 2471 0 

7 hibernate 3.6.10 Unutilized Abstraction 2432 0 

8 springframework 3.0.5 Long Statement 2427 0 

9 hibernate 3.6.9 Unutilized Abstraction 2421 0 

10 hibernate 3.6.8 Unutilized Abstraction 2417 0 

11 EaaS 1 Long Statement 240 1 

12 EaaS 1 Unutilized Abstraction 136 1 

13 dddsample-1.1.0 1 Unutilized Abstraction 87 1 

14 dddsample-1.1.0 1 Long Statement 62 1 



 

 

15 research-

modifiability-pattern-

experiment 

1 Unutilized Abstraction 57 1 

16 EaaS 1 Long Parameter List 43 1 

17 research-

modifiability-pattern-

experiment 

1 Long Statement 27 1 

18 EaaS 1 Deficient Encapsulation 26 1 

19 cloud-native-

microservice-

strangler-example 

1 Unutilized Abstraction 25 1 

20 cqrs-microservice-

sampler 

1 Unutilized Abstraction 25 1 

Table 4.3 top code smells Monoliths and Microservices codebases 

 

Level Metrics Description Threshold 

value 

Method-

level 

metrics 

Lines of code 

(LOC) 

Total Lines of source code in the method 100 

Cyclomatic 

complexity 

(CC) 

Measures the number of linearly independent 

paths a source code takes to complete a code 

execution. It defines the complexity of a 

program. 

8 

Table 4.4 Method-level metrics Reference from Designite tool 

  

Level Metrics Description Threshold 

value 

Class-

level 

metrics 

Parameter 

count (PC) 

Total count of parameters in the method 5 

Number of 

fields (NOF) 

Total count of internal fields in the class 20 

Number of 

methods 

(NOM) 

Total count of methods/functions in the class 30 

Number of 

properties 

(NOP) 

Total count of properties in the class 20 

Number of 

public fields 

(NOPF) 

Total count of public properties in the class 0 

Number of 

public 

methods 

(NOPM) 

Total count of public methods/functions in the 

class 

20 

Lines of code 

(LOC) 

Total lines of code in the class 1000 



 

 

Weighted 

methods per 

class (WMC) 

The sum of cyclomatic complexities of all the 

methods belonging to the class 

100 

Number of 

children (NC) 

Total count of children (sub-classes) of the class 10 

Depth of 

inheritance 

tree (DIT) 

The maximum inheritance path from this class 

to the root class 

6 

Lack of 

cohesion of 

methods 

(LCOM) 

Measures of the cohesion of the class, 

the correlation between the methods and the 

instance variables of the class. 

It is in the range of 0 to 1 and LCOM -1 if type 

undecidable) 

0.8 

Fan-in Total count of classes that reference as 

incoming dependencies by the class  

20 

Fan-out Total count of classes referenced as outgoing 

dependencies by the class  

20 

Table 4.5 Class-level metrics Reference from Designite tool 

 Exploratory Data Analysis 

 

The various code smells are detected using the designite tool in the initial exploratory 

analysis of the codebases after downloading the Qualitas Corpus and microservices 

from GitHub. 

This screenshot is a popular tool named PowerToys in Microsoft GitHub organisation. 

 

 
  

 

 
 

Figure 4.1 PowerToys code smell from Designite tool 

The PowerToys tool is a newer codebase of 57KLOC, and significant code smells, mostly 

in 2-3 digits in this monolith tool codebase. 



 

 

Notice that complex method and long method are low in number even in the monolith 

codebases. This pattern could be due to more awareness and consciousness toward the 

PowerToys tool's maintainability aspect and the use of static analysis in the CI pipeline 

that the code smells are reduced in the monoliths. 

However, another popular codebase of NHibernate monolith codebase of over 261KLOC, 

with significant code smells. More lines of code, a greater number of code smells, reduced 

maintainability. All categories of code smells – design, implementation, and architecture, 

are impacted by increased number of code smells in this case. There is no specific pattern 

identified in this case other than a more significant number of lines of code. 

 

 
  

 

 
Figure 4.2 NHibernate code smell from Designite tool 

 

Java codebases from the Qualitas corpus are examined for code smells using the Designite 

tool. 

Java LOC = 9663 

# Code smell Smells 

1   Unutilized Abstraction               67 

2 Broken Hierarchy                    13 

3 Insufficient Modularization           8 

4 Deficient Encapsulation               7 

5 Cyclic-Dependent Modularization 6 

6 Broken Modularization  1 

7 Magic Number 40 

8 Complex Method 38 

9 Long Statement 22 

10 Complex Conditional 15 

11 Empty catch clause 5 



 

 

12 Long Method 5 

13 Missing default 2 

14 Long Parameter List 1 

Table 4.6 Project ant 1.1 code smells 

 

Java LOC = 18816 (increased by almost 2x) 

# Code smell Smells Trend Δx 

1   Unutilized Abstraction 135 ↑ 2x 

2 Broken Hierarchy 41 ↑ 3x 

3 Cyclic-Dependent Modularization 18 ↑ 3x 

4 Insufficient Modularization 16 ↑ 2x 

5 Deficient Encapsulation 12 ↑ 2x 

6 Wide Hierarchy 2 New  

7 Broken Modularisation 1 Same  

8 Missing Hierarchy 1 New  

9 Unexploited Encapsulation 1 New  

10 Magic Number 71 ↑ 2x 

11 Complex Method 63 ↑ 2x 

12 Empty catch clause 37 ↑ 7x 

13 Long Statement 36 ↑ 2x 

14 Complex Conditional 24 ↑ 2x 

15 Long Method 8 ↑ 3+ 

16 Long Parameter List 5 ↑ 3+ 

17 Missing default 5 ↑ 4+ 

Table 4.7 Project ant 1.2 code smells 

 

Java LOC = 128434 (increased by more than 6x) 

# Code.Smell Smells Trend Δx 

1 Unutilized Abstraction 843 ↑ 6x 

2 Broken Hierarchy 208 ↑ 5x 

3 Deficient Encapsulation 195 ↑ 16x 

4 Cyclic-Dependent Modularization 185 ↑ 10x 

5 Insufficient Modularization 153 ↑ 9x 

6 Unnecessary Abstraction 46 New  

7 Unexploited Encapsulation 13 ↑ 13x 

8 Wide Hierarchy 11 ↑ 5x 

9 Broken Modularization 9 ↑ 9x 

10 Missing Hierarchy 6 ↑ 6x 

11 Multipath Hierarchy 6 New  

12 Rebellious Hierarchy 6 New  

13 Imperative Abstraction 3 New  

14 Hub-like Modularisation 2 New  

15 Multifaceted Abstraction 2 New  

16 Long Statement 540 ↑ 15x 



 

 

17 Magic Number 396 ↑ 5x 

18 Complex Method 369 ↑ 15x 

19 Complex Conditional 230 ↑ 9x 

20 Empty catch clause 196 ↑ 5x 

21 Long Parameter List 86 ↑ 17x 

22 Long Method 43 ↑ 5x 

23 Missing default 40 ↑ 8x 

24 Long Identifier 22 New  

Table 4.8 Project ant 1.8.4, 23rd versions code smells 

Java LOC = 22504 (more than 2x loc from ant 1.1 version) 

# Code.Smell Smells Trend Δx 

1 Unutilized Abstraction 68 ↑ 1+ 

2 Cyclic-Dependent Modularization 51 ↑ 8x 

3 Broken Hierarchy 46 ↑ 3x 

4 Deficient Encapsulation 32 ↑ 4x 

5 Insufficient Modularization 25 ↑ 3x 

6 Missing Hierarchy 8 New  

7 Unexploited Encapsulation 7 New  

8 Broken Modularisation 5 ↑ 1+ 

9 Multipath Hierarchy 3 New  

10 Unnecessary Abstraction 2 New  

11 Complex Method 127 ↓ -3x 

12 Magic Number 89 ↓ -4x 

13 Missing default 89 ↑ 2x 

14 Long Method 54 ↑ 11+ 

15 Complex Conditional 50 ↓ -5x 

16 Long Statement 46 ↓ -12x 

17 Long Parameter List 23 ↓ -4x 

Table 4.9 Project antlr 2.4.0 code smells 

Java LOC = 34359 (around 1.5x more loc from antr 2.4.0, v1) 

# Code.Smell Smells Trend Δx 

1 Unutilized Abstraction 191 ↑ 3x 

2 Deficient Encapsulation 187 ↑ 6x 

3 Broken Hierarchy 168 ↑ 4x 

4 Cyclic-Dependent Modularization 146 ↑ 3x 

5 Insufficient Modularization 49 ↑ 2x 

6 Missing Hierarchy 10 ↑ 2+ 

7 Unexploited Encapsulation 10 ↑ 3+ 

8 Unnecessary Abstraction 9 ↑ 4x 

9 Hub-like Modularization 2 New  

10 Rebellious Hierarchy 2 New  

11 Wide Hierarchy 2 new  

12 Long Statement 318 ↑ 6x 



 

 

13 Magic Number 267 ↑ 3x 

14 Complex Method 80 ↑ 2x 

15 Long Parameter List 64 ↑ 3x 

16 Complex Conditional 44 ↓ -6 

17 Long Identifier 20 New  

18 Missing default 13 ↓ -6x 

19 Long Method 6 ↓ -7x 

20 Empty catch clause 5 New  

Table 4.10 Project antlr 4.0 22nd version code smells 

# Code.Smell monoliths Microservices Trend Δx 

1 Unutilized Abstraction 191 416 ↑ 2x 

2 Long Statement 318 385 ↑ -67 

3 Magic Number 267 226 ↓ 41+ 

4 Long Parameter List 64 56 ↓ 8+ 

5 Broken Hierarchy 168 39 ↓ 129+ 

6 Deficient Encapsulation 187 37 ↓ 150+ 

7 Long Identifier 20 33 ↑ -13 

8 Cyclic-Dependent Modularization 146 31 ↓ 115 

9 Empty catch clause 5 18 ↑ -13 

10 Unnecessary Abstraction 9 13 ↑ -4 

11 Complex Method 80 11 ↓ 69+ 

12 Complex Conditional 44 6 ↓ 38+ 

13 Missing default 13 5 ↓ 8+ 

14 Imperative Abstraction 0 3 ↑ -3 

15 Insufficient Modularisation 49 3 ↓ 46+ 

16 Long Method 6 3 ↓ 3+ 

17 Broken Modularisation 5 2 ↓ 3+ 

18 Rebellious Hierarchy 2 1 ↓ 1+ 

Table 4.11 monoliths vs microservices combined code smells trends 

 



 

 

Figure 4.3 combined monolith codebases from the Qualitas Corpus 

 

Figure 4.4 combined code smells in monolith codebases from the Qualitas Corpus code 

smell counts>300 

 

Figure 4.5 combined code smells in monolith codebases from the Qualitas Corpus code 

smell counts<=300 

  

 Data Cleaning 

 

Data cleaning is taken care of as a part of data collection and curation process. So, no 

specific data cleaning is required. 

The code smell named magic number was removed during analysis around 182160 in 

number in the monolith codebases, hence removed from the code smells metrics 

collected to reduce the impact of this code smell. 

The code smell named unutilised and unnecessary abstraction is present in significant 

numbers (136004 Unutilised Abstraction and 9987 Unnecessary Abstraction) in 

monolith codebases but not removed in the analysis. 



 

 

 Data Partitioning 

 

The data partitioning is taken care of at the data curation level from the Qualitas 

Corpus, repositories from GitHub, and use of Designite tools to get code smell in 

comma separated values (csv) format exploratory data analysis. 

 

 Summary 

 

Excluding magic number that is highest in the monolith codebases and significant in 

number in microservices codebases, the code smells like the long statement, unutilised 

abstraction, Complex methods, long parameter list, and broken hierarchy are top code 

smells identified in the monolith codebases.  

 

Figure 4.6 top code smells in monolith codebase 

Whereas, in microservices codebases, unutilised abstraction and long statement code 

smells are significantly more compared to other ones.  



 

 

 

Figure 4.7 top code smells in microservices codebases  



 

 

CHAPTER 5: RESULTS AND EVALUATION 

 

 Introduction 

 

This study compares code smells from monolith codebases with microservices codebases 

available on the public repositories on GitHub. 

 Results 

 

Data class, large class and long method are no more significant code smell found in 

microservices than monoliths, while unnecessary/unutilised abstraction and long 

statement continue to remain as significant contributors to code smell in microservices. 

The magic number code smell remains indifferent in monolith and microservices 

codebases. 

Deficient encapsulation, cyclic-dependent modularisation and complex method and 

broken hierarchy are significantly less or none in microservices. 

Low-Code No-Code platforms are subscription-based with business modelling, business 

process execution and reports capabilities and encapsulate the complete software 

development life cycle for citizen developer and focus on solving their fundamental 

business problem. Furthermore, these platform providers take API based approach, 

including microservices, to encapsulate and provide AI, machine learning, RPA or 

Chatbot capabilities to the citizen developer. 

These low-code no-code platforms would soon become candidates for different kinds of 

code smells, which could be a future study. 

 Summary 

 

The broader availability, consumption, community contribution, and newer engineering 

practices followed in the public repositories could be the reason for fewer code smells in 

microservices or due to the example/sample nature of the codebase available public 

domain learning. Even newer monolith codebases are less prone to code smells, could be 

due to awareness or newer engineering practices. 

 

  



 

 

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

 

 Introduction 

 

There are several trends in various codebases available that are studied, but the study's 

conclusion could not be well derived from the patterns observed. This conclusion could 

be due to the lack of appropriate codebases available in the study's public domain or time 

constraint of a short study. 

 Discussion and Conclusion 

 

The results are mixed from this study, and it is established that microservices codebases 

are less prone to code smells in public repositories. 

At the same time, all cloud providers are encouraging enterprises to move their workloads 

to the containerised platform on Kubernetes in their own managed cluster. In their chase 

to move workloads and acquire more significant market share, the monoliths are moved 

as-is or minimal changes to run on Kubernetes. Kubernetes is one of the popular platforms 

for hosting microservices workloads. Monolith codebases are tuned to run on these 

platforms without re-architecture efforts, but technical debt remains running on the 

microservices centric platform. Though not substantiated by any scientific study, this is 

a market trend that could be the reasons for increased code smells in monolith codebases 

running on the containerised platform in the microservices paradigm shift. The public 

repositories are less prone to code smells, and if more and more enterprise codebases 

embrace going open source, due to this transparency, these codebases would be less prone 

to code smells and would increase productivity and save costs in maintaining legacy 

codebases. 

 Contributions 

 

This study attempted to perform a limited study on the codebases available in public 

repositories for code smells. Performing such studies on private repository would help 

many organisation identify the extent of technical debt running on their data centres and 

could be an apparent reason for bottlenecks or low productivity to churn better code to 

meet their ever-changing business demands. 

 Future Work 

 

Database code smells – RDMS and NoSQL are not considered for this study. As a part 

of the literature review, several papers are available for code smells detection using deep 

learning techniques. Detecting the code smells is a kind of reactive approach to solving 

the problem. Most of the static code analysis is post-mortem after the code is already 

written and prescriptive in nature. There are tools like ReSharper helps in code 

refactoring, while developer writing code, but these are limited licenses and do not have 

wider availability. The future study to leverage deep learning techniques and help 

building tools for broader consumption.   
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